基于图像相减和随机森林的AST3巡天暂现源及变源搜寻方法
An Automatic Method for Detecting Transients and Variable Sources in AST3 Survey Based on Image Subtraction and Random Forest
-
摘要: AST3-2 (Antarctic Survey Telescopes)光学巡天望远镜位于南极大陆最高点冰穹A, 其产生的大量观测数据对数据处理的效率提出了较高要求. 同时南极通信不便, 数据回传有诸多困难, 有必要在南极本地实现自动处理AST3-2观测数据, 进行变源和暂现源观测的数据处理, 但是受到低功耗计算机的限制, 数据的快速自动处理的实现存在诸多困难. 将已有的图像相减方案同机器学习算法相结合, 并利用AST3-2 2016年观测数据作为测试样本, 发展一套的暂现源及变源的筛选方法成为可行的选择. 该筛选方法使用图像相减法初步筛选出可能的变源, 再用主成分分析法抽取候选源的特征, 并选择随机森林作为机器学习分类器, 在测试中对正样本的召回率达到了97%, 验证了这种方法的可行性, 并最终在2016年观测数据中探测出一批变星候选体.Abstract: AST3-2 (Antarctic Survey Telescopes) Telescope locates in Dome A, the loftiest ice dome on the Antarctic Plateau. It produces huge amount of observation data which requires more efficient data reduction program to be developed. Also data transmission in Antarctica is much difficult, thus it is necessary to perform data reduction to detect variable sources and transient sources remotely and automatically in Antarctica, but this attempt is restricted by the poor computer performance in Antarcitca.For the realization of this aim, developing a new method based on pre-existing image subtraction method and random forest algorithm, taking the AST3-2 2016 dataset as test sample becomes an alternative choice. This method performs image subtraction on data set, then applies principle component analysis to extract the features of residual images. Random forest is used as a machine learning classifier, and a recall rate of 97% is resulted. Our work verifies the feasibility and accuracy of our method, and finally finds out a batch of candidates for variable stars in the AST3-2 2016 dataset.