高级检索

机器学习在星系结构参数测量中的应用

Machine Learning Applications in Galaxy Parameter Evaluation

  • 摘要: 星系的结构参数是深入理解星系形成与演化的基础, 现有的星系拟合软件, 如GALFIT、2DPHOT等, 存在运行缓慢、高度依赖人工参与以及对初始值敏感等局限性. 为了避免这些问题, 利用基于卷积神经网络(Convolutional Neural Networks, CNN)的软件GaLNet (Galaxy Light Profile Convolutional Neural Network)来进行星系结构参数测量. 基于昴星团望远镜主焦点照相机巡天(Hyper Suprime-Cam Subaru Strategic Program, HSC-SSP)的数据, 构建了机器学习所需的训练、验证和测试数据, 并利用这些数据对GaLNet进行训练. 通过将训练好的GaLNet应用于HSC-SSP的真实数据, 并与传统方法GALFIT进行比较, 发现GaLNet拟合结果的约化卡方值比起传统方法平均降低了37%, 并且其准确度和运行速度均展示出明显优势.

     

    Abstract: The structural parameters of galaxies are the foundation for a deeper understanding of their formation and evolution. Existing galaxy fitting software has limitations such as slow running speed, heavy reliance on manual operation, and sensitivity to initial values. Based on the data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) survey, we constructed a training and testing dataset. The software GaLNet (Galaxy Light Profile Convolutional Neural Network), developed based on Convolutional Neural Networks (CNN), was applied to implement an algorithm for measuring galaxy structural parameters based on the Sérsic formula. By applying it to real HSC-SSP data and comparing it with the traditional method GALFIT, the average reduced chi-square value of the fitting results was reduced by 37%, and it has clear advantages in accuracy and running speed.

     

/

返回文章
返回