红外暗云G 011.0970–0.1093的多种分子氘化增丰差异性与气态CO耗损
The Differentiation in Molecular Deuteration and CO Depletion towards the Infrared Dark Cloud G 011.0970–0.1093
-
摘要: 利用毫米波射电天文所(Institut de Radioastronomie Millimétrique, IRAM) 30 m射电望远镜在1.3–4.0 mm波段的分子谱线成图, 结合70–870 μm连续谱数据以及绿岸射电望远镜(Green Bank Telescope, GBT)对 \rmNH_3(J, K)=(1, 1)和(2, 2)谱线的成图(J为总角动量量子数, 而K描述角动量在分子主轴方向的分量), 对G 011.0970−0.1093纤维状分子云末端的一对比邻云团进行了观测. 尽管在870 μm波段下它们都表现出与连续谱流量峰值成协, 但在70 μm波段下, 它们呈现出明亮与暗弱的对照特性. 对这两个云团进行对比分析发现: (1)该极早期大质量恒星形成区的气体尘埃温度高度耦合; (2) 70 μm明亮云团的气体尘埃温度从中心(\text约17 K)到包层边缘呈递减趋势, 这预示着云团内部可能已经有原恒星形成; 70 μm暗弱云团中心较边缘更冷(\text约11 K)更致密(\text约5\times10^22\, \rmcm^-2), 且氢分子柱密度与尘埃温度存在强反相关, 故外部辐射可能主导该云团加热; (3)在pc尺度上, 气态 \rmC^18\rmO的耗损率f_\rmD(\rmC^18\rmO)与\rmHCO^+的氘化率存在强正相关, 且气态\rmC^18\rmO在冷且致密的\rmDCO^+主导云团耗损f_\rmD(\rmC^18\rmO)高达7; (4)在气体尘埃温度从10 K到20 K, 氢分子柱密度从10^22\,\rmcm^-2到10^23\,\rmcm^-2的变化环境里, \rmHCO^+、\rmN_2\rmH^+、 \rmHNC在更为致密冷暗的环境氘化率增丰明显, \rmHCN则在稍温暖且70 μm明亮的环境氘化率增丰更大, 而 \rmNH_3氘化率在此环境中没有明显变化. 这些不同分子氘化增丰的差异性可能源自其气体尘埃反应路径的差异性.Abstract: Using the IRAM (Institut de Radioastronomie Millimétrique) 30 m for a molecular line imaging survey at 1.3–4.0 mm, in conjuntion with archival dust contiunuum images spanning 70−870 μm, and \rmNH_3(J, K) = (1, 1) and (2, 2) images from GBT (Green Bank Telescope), a pair of neighboring clumps within the tail of filamentary molecular cloud G 011.0970–0.1093 is studied. While both clumps coincide spatially with the dust continuum emission peak at 870 μm, they exhibit contrasting brightnesses at 70 μm. Comparative analysis of these two clumps reveals: (1) The gas and dust temperatures are tightly coupled within this extremely young high-mass star-forming region. (2) Gas-dust temperatures of the 70 μm bright clump decrease from the center ( \sim17 K) to the envelope edge, suggesting the initiation of protostellar activities within the clump; conversely, the central region of the 70 μm dark cloud clump is colder ( \sim11 K) and denser ( \sim5\times10^22\, \rmcm^-2 ) compared to its periphery, with a strong anti-correlation between the \rmH_2 column density and dust temperature pixel by pixel, indicating dominant external heating shaping the temperature profile of this clump. (3) A strong positive correlation exists between the gaseous \rmC^18\rmO depletion (f_\rmD(\rmC^18\rmO)) and the deuterium fraction of \rmHCO^+ at pc scales, with f_\rmD(\rmC^18\rmO) reaching up to 7 in the cold and dense \rmDCO^+ dominated region. (4) With gas-dust temperatures ranging from 10 K to 20 K and \rmH_2 column densities ranging from 10^22\,\rmcm^-2 to 10^23\,\rmcm^-2, \rmHCO^+, \rmN_2\rmH^+, and \rmHNC exhibit significant deuteration enhancements towards the colder and denser clump, while \rmHCN shows greater deuteration enhancement in slightly warmer and 70 μm brighter clumps, and \rmNH_3 deuteration shows no significant change. These deuteration differentiation among species are likely related to their gas-dust forming pathways.